首页> 外文OA文献 >Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures
【2h】

Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures

机译:在mapReduce中对高高度矩阵进行直接QR分解   架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The QR factorization and the SVD are two fundamental matrix decompositionswith applications throughout scientific computing and data analysis. Formatrices with many more rows than columns, so-called "tall-and-skinnymatrices," there is a numerically stable, efficient, communication-avoidingalgorithm for computing the QR factorization. It has been used in traditionalhigh performance computing and grid computing environments. For MapReduceenvironments, existing methods to compute the QR decomposition use anumerically unstable approach that relies on indirectly computing the Q factor.In the best case, these methods require only two passes over the data. In thispaper, we describe how to compute a stable tall-and-skinny QR factorization ona MapReduce architecture in only slightly more than 2 passes over the data. Wecan compute the SVD with only a small change and no difference in performance.We present a performance comparison between our new direct TSQR method, astandard unstable implementation for MapReduce (Cholesky QR), and the classicstable algorithm implemented for MapReduce (Householder QR). We find that ournew stable method has a large performance advantage over the Householder QRmethod. This holds both in a theoretical performance model as well as in anactual implementation.
机译:QR分解和SVD是两个基本矩阵分解,在整个科学计算和数据分析中都有应用。行数比列数多的格式,即所谓的“高和瘦矩阵”,存在一种数值稳定,有效,可避免通信的算法,用于计算QR因式分解。它已在传统的高性能计算和网格计算环境中使用。对于MapReduce环境,现有的计算QR分解的方法使用气态不稳定的方法,该方法依赖于间接计算Q因子。在最佳情况下,这些方法只需要对数据进行两次传递。在本文中,我们描述了如何在仅2次以上遍历数据的情况下,在MapReduce架构上计算稳定的瘦QR分解。我们只需要很小的变化就可以计算SVD,而性能没有差异。我们在新的直接TSQR方法,MapReduce的标准不稳定实现(Cholesky QR)和MapReduce的classicstable算法(Householder QR)之间进行了性能比较。我们发现,相对于Householderer QR方法,我们的新稳定方法具有较大的性能优势。这既适用于理论性能模型,也适用于实际实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号